Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients
Background and Objectives: The consequences of stroke have a significant impact on self-sufficiency and health-related quality of life (HRQoL). Virtual reality (VR)-based rehabilitation has the potential to impact these modalities, but information on timing, volume, and intensity is not yet available. The aim of this randomized controlled trial (1:1) was to evaluate the impact of conventional rehabilitation combined with VR on self-care and domains of HRQoL in patients ≤6 months post-stroke. Materials and Methods: The intervention group completed a total of 270 min of conventional VR + rehabilitation sessions. The control group underwent conventional rehabilitation only. Primary assessments with the WHO disability assessment schedule 2.0 (WHODAS 2) questionnaire were conducted before rehabilitation (T0), after completion of the intervention (T1), and at the 4-week follow-up (T2); secondary outcomes included self-sufficiency and balance assessments. Results: Fifty patients completed the study (mean age 61.2 ± 9.0 years, time since stroke 114.3 ± 39.4 days). There were no statistically significant differences between the groups in WHODAS 2, self-sufficiency, and balance scores (p > 0.05). Conclusions: In the experimental group, there was a statistically significant difference in WHODAS 2, assessment of self-sufficiency, and balance scores before and after therapy (p < 0.05). VR appears to be a suitable tool to supplement and modify rehabilitation in patients after stroke.
Entire articleReferences:
1. Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Stroke 2018,
49, e160–e161. [CrossRef]
2. Ratnasabapathy, Y.; Chi-Lun Lee, A.; Feigin, V.; Anderson, C. Blood pressure lowering interventions for preventing dementia in
patients with cerebrovascular disease (Protocol). Cochrane Database Syst. Rev. 2009, 2001, CD004034.
3. World Health Organization. World Health Statistics 2020; World Health Organization: Geneva, Switzerland, 2020.
4. Lincoln, N.; Majid, M.;Weyman, N. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst. Rev.
2000, CD002842.
5. Wiley, E.; Khattab, S.; Tang, A. Examining the effect of virtual reality therapy on cognition post-stroke: A systematic review and
meta-analysis. Disabil. Rehabil. Assist. Technol. 2022, 17, 50–60. [CrossRef]
6. Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation
approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014, 2014, CD001920.
7. Kelly-Hayes, M.; Beiser, A.; Kase, C.S.; Scaramucci, A.; D’Agostino, R.B.; Wolf, P.A. The influence of gender and age on disability
following ischemic stroke: The Framingham study. J. Stroke Cerebrovasc. Dis. 2003, 12, 119–126. [CrossRef]
8. Luque-Moreno, C.; Jiménez-Blanco, A.; Cano-Bravo, F.; Paniagua-Monrobel, M.; Zambrano-García, E.; Moral-Munoz, J.A.
Effectiveness of visual feedback and postural balance treatment of post-stroke pusher syndrome. A systematic review. Rev.
Científica Soc. Enfermería Neurológica Engl. Ed. 2021, 53, 16–24. [CrossRef]
9. Coutts, S.B.; Wein, T.H.; Lindsay, M.P.; Buck, B.; Cote, R.; Ellis, P.; Foley, N.; Hill, M.D.; Jaspers, S.; Jin, A.Y. Canadian Stroke Best
Practice Recommendations: Secondary prevention of stroke guidelines, update 2014. Int. J. Stroke 2015, 10, 282–291. [CrossRef]
10. Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [CrossRef]
11. Pulman, J.; Buckley, E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related
quality of life in stroke patients: A systematic review. Top. Stroke Rehabil. 2013, 20, 171–188. [CrossRef]
12. Landi, F.; Cesari, M.; Onder, G.; Tafani, A.; Zamboni, V.; Cocchi, A. Effects of an occupational therapy program on functional
outcomes in older stroke patients. Gerontology 2006, 52, 85–91. [CrossRef] [PubMed]
13. Duncan, P.W.; Horner, R.D.; Reker, D.M.; Samsa, G.P.; Hoenig, H.; Hamilton, B.; LaClair, B.J.; Dudley, T.K. Adherence to postacute
rehabilitation guidelines is associated with functional recovery in stroke. Stroke 2002, 33, 167–178. [CrossRef] [PubMed]
14. Chen, C.-J.; Ding, D.; Starke, R.M.; Mehndiratta, P.; Crowley, R.W.; Liu, K.C.; Southerland, A.M.;Worrall, B.B. Endovascular vs
medical management of acute ischemic stroke. Neurology 2015, 85, 1980–1990. [CrossRef] [PubMed]
15. Zielina, M.; Šmahaj, J.; Raudenská, J.; Jav °urková, A. Využívání a vytváˇrení terapeutických her ve virtuální realitˇe a model
hráˇc/hra/terapie. Ceskoslov. Psychol. 2022, 66, 332–348. [CrossRef]
16. Levin, M.F.; Weiss, P.L.; Keshner, E.A. Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor
control and motor learning principles. Phys. Ther. 2015, 95, 415–425. [CrossRef]
Medicina 2023, 59, 1669 12 of 13
17. Khan, A.; Podlasek, A.; Somaa, F. Virtual reality in post-stroke neurorehabilitation–a systematic review and meta-analysis. Top.
Stroke Rehabil. 2023, 30, 53–72. [CrossRef]
18. Bedwell,W.L.; Pavlas, D.; Heyne, K.; Lazzara, E.H.; Salas, E. Toward a taxonomy linking game attributes to learning: An empirical
study. Simul. Gaming 2012, 43, 729–760. [CrossRef]
19. Lee, Y.;Won, M. Mediating effects of rehabilitation motivation between social support and health-related quality of life among
patients with stroke. Int. J. Environ. Res. Public Health 2022, 19, 15274. [CrossRef]
20. Lee, J.-H.; Kim, E.-J. The Effect of Diagonal Exercise Training for Neurorehabilitation on Functional Activity in Stroke Patients: A
Pilot Study. Brain Sci. 2023, 13, 799. [CrossRef]
21. Webster, D.; Celik, O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J. Neuroeng. Rehabil. 2014,
11, 108. [CrossRef]
22. Wingham, J.; Adie, K.; Turner, D.; Schofield, C.; Pritchard, C. Participant and caregiver experience of the Nintendo Wii SportsTM
after stroke: Qualitative study of the trial ofWiiTM in stroke (TWIST). Clin. Rehabil. 2015, 29, 295–305. [CrossRef] [PubMed]
23. Broeren, J.; Rydmark, M.; Sunnerhagen, K.S. Virtual reality and haptics as a training device for movement rehabilitation after
stroke: A single-case study. Arch. Phys. Med. Rehabil. 2004, 85, 1247–1250. [CrossRef]
24. Leng, Y.; Lo, W.L.A.; Mao, Y.R.; Bian, R.; Zhao, J.L.; Xu, Z.; Li, L.; Huang, D.F. The impact of cognitive function on virtual reality
intervention for upper extremity rehabilitation of patients with subacute stroke: Prospective randomized controlled trial with
6-month follow-up. JMIR Serious Games 2022, 10, e33755. [CrossRef] [PubMed]
25. Bour, A.; Rasquin, S.; Boreas, A.; Limburg, M.; Verhey, F. How predictive is the MMSE for cognitive performance after stroke?
J. Neurol. 2010, 257, 630–637. [CrossRef]
26. Mehrholz, J.;Wagner, K.; Rutte, K.; Mei ner, D.; Pohl, M. Predictive validity and responsiveness of the functional ambulation
category in hemiparetic patients after stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1314–1319. [CrossRef] [PubMed]
27. Green, J.; Young, J. A test-retest reliability study of the Barthel Index, the Rivermead Mobility Index, the Nottingham Extended
Activities of Daily Living Scale and the Frenchay Activities Index in stroke patients. Disabil. Rehabil. 2001, 23, 670–676. [CrossRef]
[PubMed]
28. 0th Revision of the International Classification of Diseases. Institute of Health Information and Statistics of the Czech Republic
[Online]. Prague. Available online: https://mkn10.uzis.cz/ (accessed on 1 November 2022).
29. Cohen-Inbar, O.; Soustiel, J.F.; Zaaroor, M. Meningiomas in the elderly, the surgical benefit and a new scoring system. Acta
Neurochir. 2010, 152, 87–97. [CrossRef]
30. Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index: A simple index of independence useful in scoring
improvement in the rehabilitation of the chronically ill. Md. State Med. J. 1965, 14, 61–65. [PubMed]
31. Richards, S.H.; Peters, T.J.; Coast, J.; Gunnell, D.J.; Darlow, M.-A.; Pounsford, J. Inter-rater reliability of the Barthel ADL index:
How does a researcher compare to a nurse? Clin. Rehabil. 2000, 14, 72–78. [CrossRef] [PubMed]
32. Quinn, T.J.; Langhorne, P.; Stott, D.J. Barthel index for stroke trials: Development, properties, and application. Stroke 2011,
42, 1146–1151. [CrossRef]
33. Prosiegel, M.; Böttger, S.; Schenk, T.; König, N.; Marolf, M.; Vaney, C.; Garner, C.; Yassouridis, A. Der erweiterte Barthel-Index
(EBI)–eine neue Skala zur Erfassung von Fähigkeitsstörungen bei neurologischen Patienten. Neurol. Rehabil. 1996, 1, 7–13.
34. Wee, J.Y.; Bagg, S.D.; Palepu, A. The Berg balance scale as a predictor of length of stay and discharge destination in an acute
stroke rehabilitation setting. Arch. Phys. Med. Rehabil. 1999, 80, 448–452. [CrossRef] [PubMed]
35. De Oliveira, C.B.; De Medeiros, I.; Frota, N.; Greters, M.E.; Conforto, A.B. Balance control in hemiparetic stroke patients: Main
tools for evaluation. J. Rehabil. Res. Dev. 2008, 45, 1215–1226. [CrossRef]
36. Lima, C.; Ricci, N.; Nogueira, E.; Perracini, M.R. The Berg Balance Scale as a clinical screening tool to predict fall risk in older
adults: A systematic review. Physiotherapy 2018, 104, 383–394. [CrossRef]
37. .stün, T.B.; Kostanjesek, N.; Chatterji, S.; Rehm, J.; World Health Organization. Measuring Health and Disability: Manual for WHO
Disability Assessment Schedule (WHODAS 2.0); .stün, T.B., Kostanjsek, N., Chatterji, S., Rehm, J., Eds.; World Health Organization:
Geneva, Switzerland, 2010.
38. Sládková, P.; Svˇecená, K. Dotazník WHODAS 2.0 a možnosti jeho využití nejen v posudkové ˇcinnosti. Revis. Assess. Med./Reviz. A
Posudkove Lek. 2023, 25, 55–59.
39. Federici, S.; Bracalenti, M.; Meloni, F.; Luciano, J.V.World Health Organization disability assessment schedule 2.0: An international
systematic review. Disabil. Rehabil. 2017, 39, 2347–2380. [CrossRef] [PubMed]
40. Howard, M.C.; Davis, M.M. A meta-analysis and systematic literature review of mixed reality rehabilitation programs: Investigating
design characteristics of augmented reality and augmented virtuality. Comput. Hum. Behav. 2022, 130, 107197.
[CrossRef]
41. Peruzzi, A.; Cereatti, A.; Mirelman, A.; Della Croce, U. Feasibility and acceptance of a virtual reality system for gait training of
individuals with multiple sclerosis. Eur. Int. J. Sci. Technol. 2013, 2, 171–181.
42. Feigin, V. Global and regional burden of stroke in 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet
2013, 382, 1. [CrossRef]
43. Gurcay, E.; Bal, A.; Cakci, A. Health-related quality of life in first-ever stroke patients. Ann. Saudi Med. 2009, 29, 36–40. [CrossRef]
Medicina 2023, 59, 1669 13 of 13
44. Johnson, L.; Bird, M.-L.; Muthalib, M.; Teo, W.-P. An Innovative STRoke Interactive Virtual thErapy (STRIVE) online platform for
community-dwelling stroke survivors: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2020, 101, 1131–1137. [CrossRef]
[PubMed]
45. Luengo-Fernandez, R.; Gray, A.M.; Bull, L.;Welch, S.; Cuthbertson, F.; Rothwell, P.M. Quality of life after TIA and stroke: Ten-year
results of the Oxford Vascular Study. Neurology 2013, 81, 1588–1595. [CrossRef]
46. Zhang, Q.; Fu, Y.; Lu, Y.; Zhang, Y.; Huang, Q.; Yang, Y.; Zhang, K.; Li, M. Impact of virtual reality-based therapies on cognition
and mental health of stroke patients: Systematic review and meta-analysis. J. Med. Internet Res. 2021, 23, e31007. [CrossRef]
[PubMed]
47. Gao, Y.; Ma, L.; Lin, C.; Zhu, S.; Yao, L.; Fan, H.; Gong, J.; Yan, X.;Wang, T. Effects of virtual reality-based intervention on cognition,
motor function, mood, and activities of daily living in patients with chronic stroke: A systematic review and meta-analysis of
randomized controlled trials. Front. Aging Neurosci. 2021, 13, 766525. [CrossRef] [PubMed]
48. Wurzinger, E.H.; Abzhandadze, T.; Rafsten, L.; Sunnerhagen, K.S. Dependency in activities of daily living during the first year
after stroke. Front. Neurol. 2021, 12, 736684. [CrossRef] [PubMed]
49. Sulter, G.; Steen, C.; De Keyser, J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke 1999,
30, 1538–1541. [CrossRef] [PubMed]
50. Hu, H.Y.; Chi,W.C.; Chang, K.H.; Yen, C.F.; Escorpizo, R.; Liao, H.F.; Huang, S.W.; Liou, T.H. TheWorld Health Organization
Disability Assessment Schedule 2.0 can predict the institutionalization of patients with stroke. Eur. J. Phys. Rehabil. Med. 2017,
53, 856–862. [CrossRef] [PubMed]